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Abstract-Pulsed photothermal radiometry is used for the determination of the convection coefficient. The 
theoretical analysis of the transient wall temperature after a brief excitation is based on the use of the zero- 
order temporal moment. Different solutions to determine the convection coefficient from experimental 
thermograms are proposed and tested for insulating walls as well as conducting ones. Experimental results 

are compared to those given by a dissipation Auxmeter in order to validate the pulsed method. 

INTRODUCTION 

BASED on the Flash method introduced by Parker et al. [I] 
in 1961, pulsed photothermal radiometry is now a much 
used tool for non-destructive testing operations [2, 31 
as well as measurement of thermophysical properties 
such as thermal diffusivity [46]. This photothermal 
method, initially used in transmission, is used by 

reflexion in its modern form, completely optical and 
without any contacts; excitation and detection are 
realized on the same side of the solid medium. The 
method consists of analysing the transient tem- 
perature on the front face of a wall, after a sudden 
deposit of luminous energy. Our work consists of 
an adaptation of this experimental principle to the 

detection and the measurement of the local convection 
coefficient. From a one-dimensional model of the wall 
temperature, taking into account its thermal nature 
(low or infinite thermal conductivity), we propose 
different methods for the transient analysis. Those 
methods rely on the notion of temporal moment [3, 
7, 81 and in particular on the zero-order temporal 
moment. In order to validate the proposed solutions, 
we will compare the results obtained by the pulsed 
method with those given by a steady-state dissipation 
fluxmeter realized in this aim. The study has been 
realized in the case of forced convection between a 
fluid (air) and a wall. In steady state, the heat transfer 
is described by Newton’s law: p = /SAT, in which 
h is a constant heat exchange coefficient (including 
convection and radiation exchanges). 

THEORETICAL MODEL 

We want to identify the heat exchange coefficient h 
from the evolution of the temperature of the front face 
of a wall, obtained after a brief thermal perturbation 
(Dirac). If we suppose that the energy deposit is uni- 
formly distributed, we must solve the following linear 
model (Fig. 1) : 

d2T 1 ar 
ax’-;z= 0 

x = 0, -AZ= h(T-T,)--i(t) 

aT 
x=e, ax=O 

t=O, T=T,. (I) 

In equation (I), i(t) is a known function describing 
the temporal distribution of the perturbation. In the 
case of a Dirac excitation of heat density Q, we obtain 
by Laplace transform the expression of the tem- 
perature’s front face of a wall 

in which U, is the n th-root of the transcendental equa- 
tion : Utan (U) = Bi. 

In parallel to this model called ‘finite thickness wall’ 

we can define two particular cases, commonly used, 

from the behaviour of the wall (low or infinite thermal 
conductivity). 

Wall 

Isolation i(t) 

0 
X 

e 

FIG. 1. Schematic description of the general model. 

3075 



3076 D. J. CKOWTHER and J. PADET 

_____-- -- 

NOMENCLATURE 

: 
thermal diffusivity, i/(pc) [m’s ‘j 
thermal effusivity, ,/(/lpc) 
[Jrn- 2r’ C~ ‘So “‘I 

c. specific heat [J kg~ ’ ‘C ‘1 

/: 
thickness [m] 
superficial heat exchange coefficient 
[Wm-“‘C ‘1 

h, convection coefficient [W m ’ ‘C ‘1 

h, radiation coefficient [W m ” C ‘1 

YVl,,, OK ,, 172, zero-. minus one- and ith-order 

temporal moment 

mX, rn! II m,* dimensionless zero-, minus 
one- and ith-order moment 

Q heat flux [J m ‘1 

R,h thermal resistance [m’ “C W ‘1 

T temperature [-Cl 

T,, ambient temperature [ Cl 
t time variable [s] 
X space variable [ml. 

Dimensionless numbers 
Bi Biot number, (he)//l 

_ 

FO Fourier number, (at)/e” 
Bij(F0) (hjt)/h 
BiFo (ht)/f(pce). 

Greek symbols 
r absorptivity 
t: emissivity 
0 temperature, (T- T.) 
0, wall temperature for a finite duration 

excitation [‘Cl 

()<, wall temperature for a Dirac excitation 

[ Cl 
i thermal conductivity [W m ’ ‘C- ‘1 

I’ density [kgm ‘1 
(T Planck constant, 

5.67xlO~“Wm~’ C ’ 
‘C duration of the excitation [s] 

T, system time constant [s] 

CP 0 incident flux [W m-‘1 

(PC convection flux [W m ‘1 

CPr radiation flux [W m “1 

% rear Rux [W m- ‘1 

i 

(a) Low conductivity walls can be described by a 
‘semi-infinite wall’ model defined in our case by 

U(0, f) = 

Q 
b,/‘W) 

1 - kJ(7rt)exp [ (i)‘t]erfc ($t)j (3) 

number, for different Biot numbers in the case of a 
‘finite thickness wall’ mode1 (Fig. 2), or vs the group- 

the dimensionless wall temperature vs the Fourier 

ing Bid’(Fo) or Bi Fo, for the ‘semi-infinite wall’ model 

and the ‘isothermal thin wall’ model. respectively 
(Figs. 3 and 4). 

in which erfc (x) is the complementary error function. 
(b) In the second case, because of the infinite nature 

of the thermal conductivity, we can consider that at 
any time the temperature is uniform inside the wall: 
so it only depends on the time variable. This model, 
called ‘isothermal thin wall’, is described by 

Expressions (3) and (4) present the advantage of being 
more simple to use than expression (2), while they 
describe many practical cases in a very satisfactory 

way. We can easily extend those models to the case of 
a finite duration T excitation. by application of 
Duhamel’s theorem 

U,(O, t) = 
s 

’ @,(O, t-u)+(u) du (5) 
0 

if t > 7, $(u) = 0 

if t < 7, 4(u) = l/r 

For more details concerning all the calculations see 
ref. [8]. From expressions (2)-(4), we can calculate 

IDENTIFICATION OF THE h COEFFICIENT 

Principk 

The proposed solutions for the identification of 
the /I coefficient from the transient wall temperature 
rest on the use of the zero-order temporal moment 

defined by 

1 

m, = b’(u) du. (6) 

--__-_Bj = 0.1 

---_Bj =, 

P.-. 
\ -* 

-.--_Bj = 5 

‘\. ==+_ 

A. -c---,_ 
‘. ‘-\----- \ -- 

\. ---. 
0.1 U:, 

.\ 
8’ 

‘1. 
= 2 f --- exp (- u:, fo) 

,,,,B/ + Bt + U2, ‘,. 
NW: \ 

U, sol. de U tan U = Bi 
0.0 I , I1U111 1 I I L,‘jJi 
0.001 0.01 0.1 1.0 

FO 

FIG. 2. ‘Finite thickness wall’ model. Dimensionless wall 
temperature vs Fourier number. 
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3. ‘Semi-infinite wall’ model. Dimensionless wall tem- 
perature vs EiJ(F0). 

0.01 1 
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4. ‘Isothermal thin wall’ model. Dimensionless wall 
temperature vs Bi Fo. 

The quantity m0 is very interesting because it is rep- 
resentative of the heat exchange between the wall and 
the fluid ; we can show [7] for the ‘semi-infinite wall’ 
model and the ‘isothermal thin wall’ model that we 
have m, = Q/h. The lower the value of h, the slower 
the integral converges; so because of the finite 
duration of the experimental thermograms, we must 
introduce a partial zero-order temporal moment 
defined by 

rno = s ” e(u) du (7) 
0 

in which tr is the total duration of the thermogram. 
The integral presents the double advantage of tak- 

ing into account the total information of the thermo- 
gram, and’ of eliminating the noise if its average value 
is equal to zero during the interval studied. From 
definition (7) and for models (3) and (4) we propose 
different solutions for determining the h coefficient. 

‘Semi-in@zite wall ’ 
Experimentally, we have not one, but two unknown 

quantities: h and the energy term Q. The value of Q 
is hard to find; we must consequently eliminate or 
calculate it. Its elimination can easily be realized by 
dividing the experimental wall temperature by its 
maximum (normalization of the thermogram). When 

(9) 

this is impossible. it is necessary to calculate it from a 
suitable analytical model. Knowing this, we propose 
two ways to determine h. 

(a) The first solution, called ‘direct identification’, 
consists, from the analytical model, of searching 
numerically for the theoretical value of h giving the 
equality between the experimental and the theoretical 
partial zero-order moment. 

(b) The second solution relies on a correlation. 
Knowing that for an adequate time, the zero-order 
temporal moments of a ‘semi-infinite wall’ are equal 
for a Dirac or a finite duration excitation, we deter- 
mine a relation between a dimensionless moment (mz) 

and the grouping Bid(Fo) 

f(m$ = .5.48-13.53mt+ 12.39(m$)2-4.19(m$3 

with 

f (mg) = BiJ(Fo). (8) 

This relation has been established numerically from 
values calculated by the model. So we have 

h = h f(m:) 
Jt 

with 

‘Isothermal thin wall ’ 
In that case we envisaged three solutions. 

(a) For the first one, because of the extreme sim- 
plicity of the model (4) we can realize an exponential 
regression (by a least square method) on the exper- 
imental thermogram. The result of the regression 
[O(t) = exp (A) exp (Bt)] is identified with (4) to 
obtain 

Q = pceexp (A) 

h = - pceB. (10) 

We notice that the principal advantage of this method, 
besides its rapidity, is to determine both unknown 
quantities of our system at the same time. However, 
for poor quality thermograms in particular, we can 
obtain a regression curve quite different from the 
experimental one. To avoid this, we add to the 
regression one condition on the experimental area. 
By adjusting the boundaries of the regression we 
search the regression curve which keeps the exper- 
imental area. This condition allows us to find the 
most representative exponential of the experimental 
evolution. 

(b) The second method uses a correlation estab- 
lished in the same way as the ‘semi-infinite wall’ 
model. This time, from expression (4) we obtain a 
relation between a dimensionless moment (mz) and 
the grouping Bi Fo : 
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&PZ;) = 7.3- 18.93m;+ 18.58(m;)‘-6.92(m;)3 

with 

.y(m$) = Bi Fo (11) 

which leads to 

(12) 

(c) At last, from the analytical expression of the 
ith-order temporal moment of expression (4). we 
obtain the relation 

m, = T&* (13) 

in which rn” is the ith-order dimensionless moment. 
In particular, for the - 1 and 0 order we have 

* I?Zc, = z,m, 

177 , = m* ,. (14) 

So, from the - 1 and 0 order experimental temporal 
moments, knowing the relation between the - 1 and 
0 order dimensionless moments (called identification 
function F), we can easily find /1 by 

F(m! ,) 
11 = pee ~~~ /, (15) 

The F-function has been approached for normalized 
thermograms from theoretical values of the - 1 and 
0 order dimensionless moments 

rng = -3.756+2.237m!, -0.265(mT ,)‘. (16) 

EXPERIMENTAL WORK 

Experimental device 

We realized an experimental device (Fig. 5) for the 
local acquisition of the temperature’s front face of a 
wall after a deposit of luminous energy. It can be 
shared in three parts. 

(a) An excitation part composed of a continuous 
YAG laser (1.06 pm), mechanically modulated by a 
metallic strip stuck onto a speaker. A function gen- 
crater controls the motion of the speaker, so that we 
can generate excitations of any duration. In addition, 
a lens permits us to obtain on the wall a spot large 
enough to consider that in its centre the thermal 
phenomenon is one-dimensional. 

(b) The second part collects the infra-red radiations 
emitted by the wall. It is composed of a first mirror 
which collects a part of the infra-red radiations and 
sends them to a HgCdTe detector through a second 
mirror. 

(c) A data acquisition part, is composed of an 
analogical/digital sampler controlled by a micro- 
computer and a function generator. An oscilloscope 

permits the visualization in real time of the signai 
given by the detector. 

The cxchangc condition is rcalircd 1~) sending air. 
colder than the ambience, to the wall’s front face. 

Experimcntul results 

We choose to test the diRerent solutions proposed 
for the h determination on two types of material: 
metals and insulating materials. 

Insulating +val/. The insulating wall is a 2.5 mm 
thick plastic sample (a = 1.13 x 10 ‘m’s ‘, h = 514 
Jm ‘Km’s I’>). We realize the acquisition of the 
local transient temperature of the sample for three ail 
flows(L’, Z 1.5ms ‘3 UZ = 2U, and U; = 311,). The 
acquisition duration was 26 s for a I s excitation. WC 

prcsenl in Fig. 6 the cxpcrimcntal thermograms and 
in Fig. 7 the evolution of their partial zero-order tcm- 
poral moment. In Fig. 6 there is quite good diffcr- 
entiation of the superficial exchange rates. However. 
it is much more obvious in Fig. 7 by the application 
of the temporal moment. We present in Table I the 
calculated h values for the experimental thcrmo- 
grams. There is quite good convergence of the results 
given by both methods, despite their fundamental 
differences. 

Mercrlii~~ VU//. We used a 1 mm thick aluminium 
sample (u = 0.86 x 10m4 m’ s I1 h = 21550 J m ’ 
K ’ s “). We present in Fig. 8 the Lransient wall 
temperatures for a free convection and a forced con- 
vection with their respective regression curves, and 
their partial zero-order temporal moment (Fig. 9). WC 
notice that despite a low signal-to-noise ratio (Fig. I(), 
the partial zero-order temporal moment gives a ver5 
good differentiation of the exchange rates. We verify, 

in this case, the great utility of the zero-order temporal 
moment. Table 2 shows the calculated h values given 
by the proposed methods. We notice this time a quite 
important divergence in the free convection case. WC 
must say that in both cases studied (insulating wall 
and metallic wall), the free convection results must 
bc regarded with caution. because as the absolute 

measurement error is quite constant. the lower the 
value of k. the higher the relative error committed. 
In forced convection. results arc more convergent, 
considering the poor quality of the thermograms. 

Time eaoiution qf’h. The previous calculations have 
been realized at time t = 26 s (i.c. at the end of the 

acquisition interval). If we do the same calculations 
at different times of the thermograms, we verify that 
the 12 coefficient does not remain constant during the 
pulsed experiment (Fig. 10) : it goes from an extreme 
to an asymptotic value. That fact is in accordance 
with the theoretical analysis made in ref. [lo]. We can 
show that this asymptotic value is representative of 
the established steady state. Consequently, to obtain 
the /I-WIUC of the steady state. WC tnust realize the 
calculations for a time as long as possible, i.e. at least 
equal to the experimental interval. 

Radiation losses linearization. We suppose that h is 
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Apple Ike 

FIG. 5. Experimental device. Acquisition of the local wall i.r. radiation. 

the sum of two coefficients: an h, coefficient (con- 
vection losses) and an h, coefficient (radiation losses). 

Knowing h, we must determine h, to find finally the 
convection coefficient. To this aim, we linearize the 
radiative transfer equation [l l] : qr = Eo(T4 - T:). 

100 

80 I 

--- u 
-.- 2lJ 
--- 3u 

(1 E 

0 5 10 15 20 25 
t (9 

FIG. 6. Insulating wall. Experimental thermograms. 

This equation can be written in the same way as 
Newton’s law : cpc = h,(T- T,) with 

h, = EcT(T’+ T,Z)(T+ T,). (17) 

So, we can now find easily an average value of h, and 
calculate the convection coefficient by : h, = h-h,. 

Experimental validation of the pulsed method 
In order to validate the pulsed method, we decided 

to compare it to another well-known measurement 
method. We realized in this aim a steady-state dis- 
sipation fluxmeter [12]. The principle is as follows : we 
insulate a volume element in a wall. This element and 

Table 1. Experimental values of h for three different air flows, 
case of the insulating wall (h in W m ’ “C- ‘) 

Correlation Direct identification 

69 72 
121 103 
158 152 

400 

t 

-_- 
-.- $” 
--- 3lJ 

320 

FIG. 7. Insulating wall. Zero-order partial moments of the 
experimental thermograms. 

---- Free convection 
- -- Forced convection 

FIG. 8. Conducting wall. Experimental thermograms. 
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FIG. 9. Conducting wall. Zero-order partial moments of the 
experimental thermograms. 

Table 2. Experimental values of h for two different exchange 
rates, case of the metallic wall (h in W mm’ ‘XI ‘) 

Identification 
Regression Correlation function 

Free 35 23 13 
convection 

Forced 60 60 so 
convection 

the wall are heated up in a separated way, to obtain 
a uniform wall temperature. When this equilibrium is 
obtained, if we know the thermal power dissipated 

in the volume element, from the conservation heat 
equation (18)) we find the expression of the convection 

coefficient (1 Y) 

1 
12, = (r_Tj aqJo-EcJ(T”-T:)~- 

T- T;, 
F,, 1 (1Y) 

Our fluxmeter has been made in the following way: 
the wall of the fluxmeter is made with a 200 x 300 x 5 
mm aluminium plate, in which we had implanted a 

measurement element composed of an aluminium 

chip (diameter = 10 mm, thickness = 1 mm) stuck 

4OOr 

0 u 
0 2u 

7 I x 3U 

; 
E 200 

r 
c YL xYLx_ 

100 I- x-x_ Y-Y-X-x-x 

FIG. 10. Insulating wall. Evolution of the calculated h-values 
vs time. Calculation by direct identification method. 

$1, fig 
8.5 1 1.5 2 2.5 2315 

Air speed (m s-‘1 

1’:~. I I. Conducting wall. Compartson ofthc three proposed 
methods and the fluxmeter method. 

onto a PVC cylinder (diameter = 10 mm, thick- 

ness = 5 mm). This element is positioned in the flux- 
meter plate by three silicon dots. The measurement 
element is insulated from the wall by a 1 mm thick 
ring of air. The plate is heated up on its rear face by- 

an electrical resistance, and the measurement element 
on its front face by a laser beam. The whole thing is 
insulated on the back face by a 2.5 cm thick layer of 

glass wool, to limit the heat losses as much as possible. 
The control of the wall tcmperaturc uniformity is 
realized by an i.r. video camera. This allows us to 
adjust the laser beam power at any time. With this 
experimental device, we realized measurements by the 

pulsed method and by the fluxmeter method at the 
same time, for different air flows on the front side 01 
the wall. As the plate is made of aluminium we must 
use the ‘isothermal thin wall’ model to describe its 
thermal evolution. We made mcasurcments for six 
different air flows (2 1, 1.5, 7. 2.5. 3 and 3.5 m s ‘). 

We present in Fig. 11 the results given by each method. 

Despite the difference between the solutions proposed 
for the I? determination and besides the quite pool 

quality of the experimental thermograms in the case 
of conducting materials (e.g. Fig. 8), the results given 
by all the methods arc quite convergent, which is very 
encouraging for the use of the transient method. 

CONCLUSION 

We have shown that, by mcans of a pulsed photo- 
thermal radiometry method, it is possible to detect 
a superficial heat exchange and thus to calculate a 

convection coefficient. The method is quite efficient 
in forced convection, but not yet precise enough to 
envisage measurement in fret convection, besides the 
use of zero-order temporal moments. However, com- 
pletely optical and without any contacts, this method 
can be useful for some control operations realized ~JZ 
situ. We verified that the exchange coefficient is not 
constant during the pulsed experiment, but finally we 
found that this is not a real handicap to find an h 
value representative of a steady-state heat exchange. 
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MESURE LOCALE DU COEFFICIENT DE CONVECTION PAR 
PHOTOTHERMIQUE IMPULSIONNELLE 

RADIOMETRIE 

RhunC--ta radiometrie photothermique impulsionnelle est ici utilisie pour la determination de coefficients 
de convection. L’analyse theorique du regime transitoire de la temperature parietale suivant une excitation 
breve est basee sur ~utilisation des moments temporels d’ordre zero. Diffkentes solution pour determiner 
le coefficient de convection a partir de thermogrammes expkimentaux sont proposees et testees tant pour 
des parois isolantes que conductrices. Les r&hats experimentaux sont compares a ceux donnes par un 

fluxmbtre a dissipation, dans le but de valider la methode impulsionnelle. 

MESSUNG DES ~RTLICHENW~RM~~BERGANGSKOEFFIZIENTEN BEI 
KONVEKTION MIT HILFE DER GEPULSTEN PHOTOTHERMISCHEN 

RADIOMETRIE 

Zusammenfassung-In der vorliegenden Arbeit wird die gepulste photothermische Radiometrie zur Bestim- 
mung der WBrmetibergangskoeffizienten bei Konvektion verwendet. Die theoretische Untersuchung der 
transienten Wandtemperatur nach einer kurzen Anregung beruht auf der Verwendung des zeitlichen 
Moments nullter Ordnung. Es werden verschiedene Losungen zur Bestimmung des W~rme~~rg~gsko- 
effizienten bei Konvektion aufgrund der experimentell ermittelten The~o~~e vorgeschlagen. Diese 
werden fur isolierende W&de wie such fiir leitende Wlinde iiberpriift. Die Versuchsergebnisse werden mit 
solchen verglichen, welche sich bei Verwendungeines Dissipationsstrommelgerates ergeben. Dies geschieht, 

urn das Impulsverfahren zu bestltigen. 

Asmnrannn-Hbmynncrian $oTorepMnnecrraa pamiohferpna ucnonb3yercff nnr onpe~eneaua xapaxre- 
pmmi~ KOHB~H~U. Teopexnqecnoe onpenenemie riecrannonapnoii Tebfneparypbt cremcn nocne nenpo- 
L[OnXCnTenbnOrO nO36yXrneHUX 6a3npyeTCff Ha UCuOJIb30BaHAU MOMeHTa HyneBOrO nOpaAXa. 
Hpezuroxrenbt H anpo6npoaanbr pasmnnmre cnoco6r~ onpenenennn xapaKTepncTrix xoffeexnmi na 
ocHOne 3K3nep~MeHT~~x T~MOI’PZIMM ms ~O~POB~H~X a ff~B0~ CXHOK. c nenbro npo- 
8epKn 3tj+XTRBROCTH ~~~~HOrO MeTOW 3K~~ep~Me~T~H~e &UiHM~ CpaBHHBar0TX-X C Pe3ynbTa- 

TZiME, IIOJQ’WHHblMEi C HClTOJIb3OBaHHeM @iOKCMeTpa. 


