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Abstract—Pulsed photothermal radiometry is used for the determination of the convection coefficient. The

theoretical analysis of the transient wall temperature after a brief excitation is based on the use of the zero-

order temporal moment. Different solutions to determine the convection coefficient from experimental

thermograms are proposed and tested for insulating walls as well as conducting ones. Experimental results
are compared to those given by a dissipation fluxmeter in order to validate the pulsed method.

INTRODUCTION

BaseD on the Flash method introduced by Parker ez al. [1]
in 1961, pulsed photothermal radiometry is now a much
used tool for non-destructive testing operations [2, 3]
as well as measurement of thermophysical properties
such as thermal diffusivity [4-6]. This photothermal
method, initially used in transmission, is used by
reflexion in its modern form, completely optical and
without any contacts; excitation and detection are
realized on the same side of the solid medium. The
method consists of analysing the transient tem-
perature on the front face of a wall, after a sudden
deposit of luminous energy. Our work consists of
an adaptation of this experimental principle to the
detection and the measurement of the local convection
coefficient. From a one-dimensional model of the wall
temperature, taking into account its thermal nature
(low or infinite thermal conductivity), we propose
different methods for the transient analysis. Those
methods rely on the notion of temporal moment [3,
7, 8] and in particular on the zero-order temporal
moment. In order to validate the proposed solutions,
we will compare the results obtained by the pulsed
method with those given by a steady-state dissipation
fluxmeter realized in this aim. The study has been
realized in the case of forced convection between a
fluid (air) and a wall. In steady state, the heat transfer
is described by Newton’s law: ¢ = ASAT, in which
h is a constant heat exchange coefficient (including
convection and radiation exchanges).

THEORETICAL MODEL

We want to identify the heat exchange coefficient 4
from the evolution of the temperature of the front face
of a wall, obtained after a brief thermal perturbation
(Dirac). If we suppose that the energy deposit is uni-
formly distributed, we must solve the following linear
model (Fig. 1):
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In equation (1), i(7) is a known function describing
the temporal distribution of the perturbation. In the
case of a Dirac excitation of heat density Q, we obtain
by Laplace transform the expression of the tem-
perature’s front face of a wall
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in which U, is the nth-root of the transcendental equa-
tion: Utan (U) = Bi.

In parallel to this model called ‘finite thickness wall’
we can define two particular cases, commonly used,
from the behaviour of the wall (low or infinite thermal
conductivity).

Isolation

F1G. 1. Schematic description of the general model.
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a thermal diffusivity, 1/(pc) [m?s™ ']
b thermal effusivity, \/(1pc)
[J m- 2 (:C— t s~ lf2]

¢ specific heat [Jkg™'°C ']

e thickness [m]

h superficial heat exchange coefficient
Wm™2C ']

h, convection coefficient [Wm " 2°C™ ']

h, radiation coefficient [Wm~2°C "]

my, m_ ., m, zero-, minus one- and ith-order
temporal moment

m§, m* |, m¥ dimensionless zero-, minus
one- and ith-order moment

0 heat flux [Jm %

R,  thermal resistance [m*"C W™ ']

T temperature [*C]

T, ambient temperature ['C]

f time variable [s]

X space variable [m].

Dimensionless numbers
Bi Biot number, (he)/A

NOMENCLATURE

Fo Fourier number, (at)/e’
Bi/(Fo) (Db
BiFo (hr)/(pce).

Greek symbols |

% absorptivity !
& emissivity |
0 temperature, (T—T,) ,
0, wall temperature for a finite duration
excitation [*C]
0y wall temperature for a Dirac excitation
[Cl
A thermal conductivity [Wm™ ' °C™Y
P density [kgm 7
a Planck constant,
5.67x107*Wm~'"C *
T duration of the excitation [s]
7, system time constant [s]
¢,  incident flux [Wm™?
0. convection flux [Wm™ 7

0. radiation flux [Wm~ %]

0, rear flux [Wm™ 7]

(a) Low conductivity walls can be described by a
‘semi-infinite wall’ model defined in our case by

000,1) =

I;J%;){‘ o] (§eer i)} o

in which erfc (x) is the complementary error function.

(b) In the second case, because of the infinite nature
of the thermal conductivity, we can consider that at
any time the temperature is uniform inside the wall;
so it only depends on the time variable. This model,
called ‘isothermal thin wall’, is described by

0 ht
0(1) = 5(’; exp <— pce>' (4)

Expressions (3) and (4) present the advantage of being
more simple to use than expression (2), while they
describe many practical cases in a very satisfactory
way. We can easily extend those models to the case of
a finite duration t excitation. by application of
Duhamel’s theorem

00,1 = j! 04(0, 1 —w)p(u) du (5
with
ite>1, dw)=0
ifr<t, ¢ =1/t

For more details concerning all the calculations see
ref. [8]). From expressions (2)—(4), we can calculate

the dimensionless wall temperature vs the Fourier
number, for different Biot numbers in the case of a
‘finite thickness wall’ model (Fig. 2), or vs the group-
ing Bi,/(Fo) or Bi Fo, for the ‘semi-infinite wall’ model
and the ‘isothermal thin wall’ model, respectively
(Figs. 3 and 4).

IDENTIFICATION OF THE h COEFFICIENT

Principle
The proposed solutions for the identification of
the £ coefficient from the transient wall temperature

rest on the use of the zero-order temporal moment
defined by

mgy = J O(u) du. (6)
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FiG. 2. ‘Finite thickness wall’ model. Dimensionless wall
temperature vs Fourier number.
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FiG. 3. ‘Semi-infinite wall’ model. Dimensionless wall tem-
perature vs Bi,/(Fo).
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FiG. 4. ‘Isothermal thin wall’ model. Dimensionless wall
temperature vs Bi Fo.

The quantity m, is very interesting because it is rep-
resentative of the heat exchange between the wall and
the fluid ; we can show [7] for the ‘semi-infinite wall’
model and the ‘isothermal thin wall’ model that we
have mqy = Q/h. The lower the value of A, the slower
the integral converges; so because of the finite
duration of the experimental thermograms, we must
introduce a partial zero-order temporal moment
defined by

my = er 6(u) du @

in which #; is the total duration of the thermogram.
The integral presents the double advantage of tak-
ing into account the total information of the thermo-
gram, and of eliminating the noise if its average value
is equal to zero during the interval studied. From
definition (7) and for models (3) and (4), we propose
different solutions for determining the % coefficient.

‘Semi-infinite wall’

Experimentally, we have not one, but two unknown
quantities: # and the energy term Q. The value of Q@
is hard to find; we must consequently eliminate or
calculate it. Its elimination can easily be realized by
dividing the experimental wall temperature by its
maximum (normalization of the thermogram). When
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this is impossible, it is necessary to calculate it from a
suitable analytical model. Knowing this, we propose
two ways to determine A.

(a) The first solution, called ‘direct identification’,
consists, from the analytical model, of searching
numerically for the theoretical value of 4 giving the
equality between the experimental and the theoretical
partial zero-order moment.

(b) The second solution relies on a correlation.
Knowing that for an adequate time, the zero-order
temporal moments of a ‘semi-infinite wall’ are equal
for a Dirac or a finite duration excitation, we deter-
mine a relation between a dimensionless moment (%)
and the grouping Bi,/(Fo)

f(m¥) = 5.48—13.53m¥+12.39(m¥)* —4.19(m¥)*
with
f(m$) = Biy/(Fo). ®)

This relation has been established numerically from
values calculated by the model. So we have

b
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h=—f(m})

with
mo()b

9
o0 ©)

m§ =

‘Isothermal thin wall’
In that case we envisaged three solutions.

(a) For the first one, because of the extreme sim-
plicity of the model (4), we can realize an exponential
regression (by a least square method) on the exper-
imental thermogram. The result of the regression
[0(2) = exp (A4) exp (Bf)] is identified with (4) to
obtain

Q = pceexp (4)

h= —pceB. (10)

We notice that the principal advantage of this method,
besides its rapidity, is to determine both unknown
quantities of our system at the same time. However,
for poor quality thermograms in particular, we can
obtain a regression curve quite different from the
experimental one. To avoid this, we add to the
regression one condition on the experimental area.
By adjusting the boundaries of the regression we
search the regression curve which keeps the exper-
imental area. This condition allows us to find the
most representative exponential of the experimental
evolution.

(b) The second method uses a correlation estab-
lished in the same way as the ‘semi-infinite wall’
model. This time, from expression (4), we obtain a
relation between a dimensionless moment (m¥) and
the grouping Bi Fo:
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gm¥) = 7.3—18.93m%+ 18.58(m%)> — 6.92(m*)°

with
g(mE) = BiFo (1N
which leads to
pee
h=""glm)
with
g _ Ma(Dpce
my or (12)

(c) At last, from the analytical expression of the
ith-order temporal moment of expression (4), we
obtain the relation

(13)

in which mf¥ is the ith-order dimensionless moment.
In particular, for the — 1 and 0 order we have

m, =t}

My = Ty
m o= m* . (14)
So, from the —1 and 0 order experimental temporal

moments, knowing the relation between the —1 and

0 order dimensionless moments (called identification

function F), we can easily find /4 by
m* )

F(
h = pce——
my,

(15)

The F-function has been approached for normalized
thermograms from theoretical values of the —1 and
0 order dimensioniess moments

m¥ = —3.756+2.23Tm* , —0.265(m* ;)*. (16)

EXPERIMENTAL WORK

Experimental device

We realized an experimental device (Fig. 5) for the
local acquisition of the temperature’s front face of a
wall after a deposit of luminous energy. It can be
shared in three parts.

(a) An excitation part composed of a continuous
YAG laser (1.06 um), mechanically modulated by a
metallic strip stuck onto a speaker. A function gen-
erator controls the motion of the speaker, so that we
can generate excitations of any duration. In addition,
a lens permits us to obtain on the wall a spot large
enough to consider that in its centre the thermal
phenomenon is one-dimensional.

(b) The second part collects the infra-red radiations
emitted by the wall. It is composed of a first mirror
which collects a part of the infra-red radiations and
sends them to a HgCdTe detector through a second
mirror.

(c) A data acquisition part, is composed of an
analogical/digital sampler controlled by a micro-
computer and a function generator. An oscilloscope
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permits the visualization in real time of the signal
given by the detector.

The exchange condition is realized by sending air.
colder than the ambience, to the wall’s {ront lace.

Experimental results

We choose 1o test the different solutions proposed
for the / determination on two types of material:
mctals and insulating materials.

Insulating wall. The insulating wall is 4 2.5 mm
thick plastic sample (@ = 1.13x 10" "m*s" ', b = 514
Jm 2 K~' s "3, We realize the acquisition of the
local transient temperature of the sample for three air
flows (Uy = 1.5ms ', U, =2U,and U, = 3U,). The
acquisition duration was 26 s for a | s cxcitation. We
present in Fig. 6 the cxperimental thermograms and
in Fig. 7 the evolution of their partial zero-order tem-
poral moment. In Fig. 6 there is quite good differ-
entiation of the superficial exchange rates. However.
it is much more obvious in Fig. 7 by the application
of the temporal moment. We present in Table | the
calculated # values for the experimental thermo-
grams. There is quite good convergence of the results
given by both methods, despite their fundamental
differenccs.

Metallic wall. We used a 1| mm thick aluminiom
sample (¢ =0.86x107* m? s ', h=21550 ] m *
K 's '), We present in Fig. 8 the transient wali
temperatures for a free convection and a forced con-
vection with their respective regression curves, and
their partial zero-order temporal moment (Fig. 9). We
notice that despite a low signal-to-noise ratio (Fig. 8),
the partial zero-order temporal moment gives a very
good differentiation of the exchange rates. We verify,
in this case, the great utility of the zero-order temporal
moment. Table 2 shows the calculated # values given
by the proposed methods. We notice this time a quite
important divergence in the free convection case. We
must say that in both cases studied (insulating wall
and metallic wall), the free convection results must
be regarded with caution, because as the absolute
measurement error is quite constant, the lower the
value of A. the higher the relative error committed.
In forced convection, results arc more convergent,
considering the poor quality of the thermograms.

Time evolution of h. The previous calculations have
been realized at time ¢ = 26 s (i.c. at the end of the
acquisition interval). If we do the same calculations
at different times of the thermograms, we verify that
the / coefficient does not remain constant during the
pulsed experiment (Fig. 10): it goes from an extremc
to an asymptotic value. That fact is in accordance
with the theoretical analysis made in ref. [10}. We can
show that this asymptotic value is representative of
the established steady state. Consequently, to obtain
the /i-valuc of the steady state, we must realize the
calculations for a time as long as possible, i.e. at least
equal to the experimental interval.

Radiation losses linearization. We suppose that £ is
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F1G. 5. Experimental device. Acquisition of the local wall i.r. radiation.

the sum of two coefficients: an 4, coefficient (con-
vection losses) and an A, coefficient (radiation losses).
Knowing s, we must determine 4, to find finally the
convection coefficient. To this aim, we linearize the
radiative transfer equation [11]: @, = ea(T*—T32).
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FiG. 6. Insulating wall. Experimental thermograms.
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F1G. 7. Insulating wall. Zero-order partial moments of the
experimental thermograms.

This equation can be written in the same way as
Newton’s law: ¢, = h(T—T,) with

b, = ea(T?+ T(T+T)). a1n

So, we can now find easily an average value of 4, and
calculate the convection coefficient by : b, = h—h,.

Experimental validation of the pulsed method

In order to validate the pulsed method, we decided
to compare it to another well-known measurement
method. We realized in this aim a steady-state dis-
sipation fluxmeter [12]. The principle is as follows : we
insulate a volume element in a wall. This element and

Table 1. Experimental values of 4 for three different air flows,
case of the insulating wall (kin Wm~2°C™")

Correlation Direct identification
U, 69 72
U, 121 103
U, 158 152
15F —--— Free convection
—~— Forced convection
S12F
o
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Fi1G. 8. Conducting wall. Experimental thermograms.
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F1G. 9. Conducting wall. Zero-order partial moments of the
experimental thermograms.

Table 2. Experimental values of 4 for two different exchange
rates, case of the metallic wall (hin Wm~2°C™ ")

Identification

Regression Correlation function
Free 35 23 13
convection
Forced 60 60 50

convection

the wall are heated up in a separated way, to obtain
a uniform wall temperature. When this equilibrium is
obtained, if we know the thermal power dissipated
in the volume element, from the conservation heat
equation (18), we find the expression of the convection
coefficient (19)

a9y = @t @+ @y (18)

1

AR

T— 'r;\
apo—ea(TH—TH— —-2 | (19)
R1h
Our fluxmeter has been made in the following way:
the wall of the fluxmeter is made with a 200 x 300 x 5
mm aluminium plate, in which we had implanted a
measurement element composed of an aluminium
chip (diameter = 10 mm. thickness = I mm) stuck

400
I o U
—~ 300} o 2U
x L x 3V
D
£ 200-
2 |
o \x_"\x—
100+ XXtk e
F
0 L e it Cot e bbbl
0 10 20 30

t(s)

FiG. 10. Insulating wall. Evolution of the calculated A-values
vs time. Calculation by direct identification method.
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FiG. 11. Conducting wall. Comparison of the three proposed
methods and the fluxmeter method.

onto a PVC cylinder (diameter = 10 mm, thick-
ness = 5 mm). This element is positioned in the flux-
meter plate by three silicon dots. The measurement
clement is insulated from the wall by a 1 mm thick
ring of air. The plate is heated up on its rear face by
an electrical resistance, and the measurement element
on its tront face by a laser beam. The whole thing is
insulated on the back face by a 2.5 cm thick layer of
glass wool, to limit the heat losses as much as possible.
The control of the wall temperature uniformity is
realized by an i.r. video camera. This allows us to
adjust the laser beam power at any time. With this
experimental device, we realized measurements by the
pulsed method and by the fluxmeter method at the
same time, for different air flows on the front side of
the wall. As the plate is made ol aluminium we musl
use the ‘isothermal thin wall’ model to describe its
thermal evolution. We made mcasurcments for six
different air flows (= 1,1.5,2,2.5. 3and 3.5ms ).
We present in Fig. 11 the results given by each method.
Despite the difference between the solutions proposed
for the / determination and besides the quite poor
quality of the experimental thermograms in the case
of conducting materials (e.g. Fig. 8), the results given
by all the methods are quite convergent, which is very
encouraging for the use of the transient method.

CONCLUSION

We have shown that, by means of a pulsed photo-
thermal radiemetry method, it is possible to detect
a superficial heat exchange and thus to calculate a
convection coefficient. The method is quite efficient
in forced convection, but not yet precise enough to
envisage measurement in free convection, besides the
use of zero-order temporal moments. However, com-
pletely optical and without any contacts, this method
can be useful for some control operations realized in
situ. We verified that the cxchange coefficient is not
constant during the pulsed experiment, but finally we
found that this is not a real handicap to find an 4
value representative of a steady-state heat exchange.
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MESURE LOCALE DU COEFFICIENT DE CONVECTION PAR RADIOMETRIE
PHOTOTHERMIQUE IMPULSIONNELLE

Résumé—La radiométrie photothermique impulsionnelle est ici utilisée pour la détermination de coefficients

de convection. L’analyse théorique du régime transitoire de la température pariétale suivant une excitation

bréve est basée sur I'utilisation des moments temporels d’ordre zéro. Différentes solution pour déterminer

Ie coefficient de convection & partir de thermogrammes expérimentaux sont proposées et testées tant pour

des parois isolantes que conductrices. Les résultats expérimentaux sont comparés 4 ceux donnés par un
fluxmétre 4 dissipation, dans le but de valider la méthode impulsionnelle.

MESSUNG DES ORTLICHEN WARMEUBERGANGSKOEFFIZIENTEN BEI
KONVEKTION MIT HILFE DER GEPULSTEN PHOTOTHERMISCHEN
RADIOMETRIE

Zusammenfassung—In der vorliegenden Arbeit wird die gepulste photothermische Radiometrie zur Bestim-
mung der Warmeiibergangskoeffizienten bet Konvektion verwendet. Die theoretische Untersuchung der
transienten Wandtemperatur nach einer kurzen Anregung beruht auf der Verwendung des zeitlichen
Moments nullter Ordnung. Es werden verschiedene Lésungen zur Bestimmung des Wirmeiibergangsko-
effizienten bei Konvekfion aufgrund der experimentell ermittelten Thermogramme vorgeschlagen. Diese
werden fir isolierende Winde wie auch fiir leitende Wiinde iiberpriift. Die Versuchsergebnisse werden mit
solchen verglichen, welche sich bei Verwendung eines DissipationsstrommeBgerites ergeben. Dies geschieht,
um das Impulsverfahren zu bestitigen.

ONPEJEJIEHYE JIOKAJIBHBIX XAPAKTEPHCTHUK KOHBEKLIMH METOIOM
MMIYJIbCHON $OTOTEPMUYECKOH PAAMOMETPUH

Anporamus-—HMry/ibcHas GOTOTEPMUYECKas PAIHOMETPHA HCHIONL3YETCH 1A ONpEMeIIEHHA XapaKTe-

pucTHK Konsexuun. TeopeTHyecKkoe onpenesieHHe HECTAUMOHADHON TEMIEPATYpPEI CTEHKH I10CJE HENpPO-

JOJDKHTENILHOrO BO30YXnmenus OalupyeTcs Ha MCHONB30BAHHM MOMEHTA HYNEBOTO MOPAAKA.

TIpenoxens! # anpobHpoBaHB pasnwiHbie crnocoObl ONpenNeieHWs XapaKTePHCTHK KOHBEKUMHM Ha

OCHOBE JK3NCPHMCHTAIBHBIX TEPMOrPaMM IS H30JMPOBAHHEIX H NPOBOAANINX cTeHOK. C Ueibio Opo-

pepkH 3PPEKTHBHOCTH HMITY/IbCHOTO METOHA IKCHEPHMCHTANLHEIE AAHHLIC CPaBHHBAIOTCA C pe3yJibTa-
TaMH, HOJTYMECHHBIME ¢ HCIOJIb30BaHHEM (moKcMeTpa.



